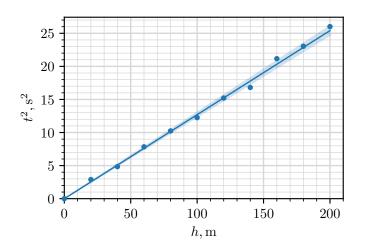
E1: Planet - SOLUTION

A.1: The free-fall acceleration g can be found by dropping the ball from low heights such that the air friction and effects from the curvature of the planet are minimized. We also choose the radius and density of the ball to be as big as possible to minimize the effect of air friction, i.e. setting r = 50 cm, $\rho = 10$ g/cm³. The drop height is then given by $h = gt^2/2$, and so we can find g from the slope of t^2 vs h. From the graph, we measure the slope 2/g = 0.127 s²/m and its error $\Delta(2/g) = 0.004$ s²/m and so g = 15.7 m/s² with an error of $\Delta g = 0.5$ m/s².

$r = 50 \mathrm{cm}$, $ ho = 10 \mathrm{g/cm^3}$					
$h(\mathbf{m})$	$h(\mathbf{m}) \mid s(\mathbf{m}) \mid t(\mathbf{s}) \mid t^2(\mathbf{s}^2)$				
0	0.0	0.0	0.0		
20	0.0	1.7	2.9		
40	0.0	2.2	4.8		
60	0.0	2.8	7.8		
80	0.1	3.2	10.2		
100	0.1	3.5	12.2		
120	0.2	3.9	15.2		
140	0.0	4.1	16.8		
160	0.1	4.6	21.2		
180	0.1	4.8	23.0		
200	0.1	5.1	26.0		



Marking scheme:

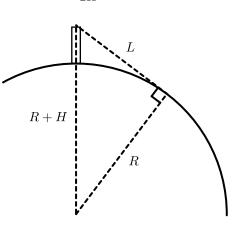
Theory	$h = gt^2/2$	0.20 pts
Data	varying only h	0.05 pts
	maximising r	0.05 pts
	maximising $ ho$	0.05 pts
	table has units	0.05 pts
	h distributed roughly uni-	0.05 pts
	formly	_
	$h_{\max} < 300 \mathrm{m}$	0.05 pts
	$h_{\rm max} - h_{\rm min} > 100 \mathrm{m}$	0.05 pts
	correct calculations of de-	0.05 pts
	rived quantities	-
	7 or more measurements	0.30/0.30
	6 measurements	0.25/0.30
	5 measurements	0.20/0.30
	4 or fewer measurements	0.10/0.30

D 1		0.00
Plotting	overall plot	0.30 pts
	points don't cover 60% of the	-0.10 pts
	area	
	missing axis labels	-0.05 pts
	missing axis units	-0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mistakes	-0.10/-0.10
Fit line	drawn on graph	0.05 pts
	line passes through origin	0.05 pts
	slope computed with units	0.10 pts
	uncertainty of slope com-	0.10 pts
	puted	-
Values	$15.0 \mathrm{m/s^2} \le g \le 16.4 \mathrm{m/s^2}$	0.20/0.20
	$14.3 \mathrm{m/s^2} \le g \le 17.1 \mathrm{m/s^2}$	0.10/0.20
	units for value	0.05 pts
	$\Delta g \leq 0.7 \mathrm{m/s^2}$	0.20/0.20
	$\Delta g \le 1.4 \mathrm{m/s^2}$	0.10/0.20
	units for error	0.05 pts
	sum	2.0 pts

Points are added additively (including negative points), except for blocks of grey background, where the option with maximal points should be chosen (in absolute value)

A.2: How far one can see from on top of the tower can be related to the radius of the planet via the right triangle shown in the figure below. Applying the Pythagoras theorem on the triangle, one gets $(R+H)^2 = L^2 + R^2$ and so

$$R = \frac{L^2 - H^2}{2H} = 13\,200\,\mathrm{km}.$$



Marking scheme:

Theory	correct geometry (either a fig-	0.20 pts
	ure or implicitly assumed)	
	correct formula	0.20 pts
Values	correct value	0.10 pts
	sum	0.5 pts

A.3: From Newton's law of gravity, $g = GM/R^2$. Hence,

$$M = \frac{gR^2}{G} = 4.2 \times 10^{25} \,\mathrm{kg}.$$

By adding the errors in quadrature, we find the error

$$\Delta M = \frac{\Delta g}{g} M = 0.2 \times 10^{25} \,\mathrm{kg}.$$

Our estimation of free-fall acceleration has a contribution from the centrifugal force caused by the rotation of the planet. This serves to reduce the acceleration on the surface and hence decrease our estimation of the planet's mass.

Marking scheme:

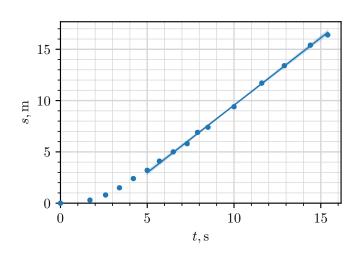
Theory	correct formula	0.10 pts
	correct phenomena	0.20 pts
Values	$3.9 \times 10^{25} \mathrm{kg} \le M \le 4.5 \times 10^{25} \mathrm{kg}$	0.10/0.10
	$3.6 \times 10^{25} \mathrm{kg} \le M \le 4.8 \times 10^{25} \mathrm{kg}$	0.05/0.10
	missing units for value	-0.05 pts
	$\Delta M \leq 0.3 imes 10^{25} \mathrm{kg}$	0.10/0.10
	$\Delta M \leq 0.6 imes 10^{25}{ m kg}$	0.05/0.10
	missing units for error	-0.05 pts
	sum	0.5 pts

The student can't get overall negative points for value nor error (for example when the value is completely out of range and the units are wrong).

B.1: In general, if the variations in gravitational acceleration are small (as is the case here as $H \ll R$), as a response to air drag, objects tend to terminal velocity where they experience no net acceleration. In the reference frame of air, this corresponds to the object falling straight down with some terminal speed v_t . In the lab frame, the object then has horizontal and vertical speeds of u and v_t respectively.

In order to find u, we can choose to drop an object that reaches terminal velocity as fast as possible and then observe how the displacement s relates to the fall time t. When terminal velocity is reached, we expect $s = s_0 + ut$, where s_0 captures the displacement related to reaching terminal velocity. To maximize the effects of air drag, we minimize radius and density, i.e. setting $\rho = 0.1$ g/cm³, and r = 5 cm. Plotting s vs t, we measure the slope to be u = 1.31 m/s with an error of $\Delta u = 0.04$ m/s.

$r = 5 \mathrm{cm}$, $ ho = 0.1 \mathrm{g/cm^3}$				
$h(\mathbf{m})$	$s(\mathbf{m})$	$t(\mathbf{s})$		
0	0.0	0.0		
20	0.3	1.7		
40	0.8	2.6		
60	1.5	3.4		
80	2.4	4.2		
100	3.2	5.0		
120	4.1	5.7		
140	5.0	6.5		
160	5.8	7.3		
180	6.9	7.9		
200	7.4	8.5		
240	9.4	10.0		
280	11.7	11.6		
320	13.4	12.9		
360	15.4	14.4		
400	16.4	15.4		



Marking scheme:

Theory	idea of reaching terminal ve- locity as fast as possible	0.15 pts
	$s = s_0 + ut$	0.10 pts
Data	varying only h	0.05 pts
Dutu	minimising r	0.05 pts
	minimising ρ	0.05 pts
	table has units	0.05 pts
	h distributed roughly uni-	0.05 pts
	formly	
	$h_{\text{max}} \ge 300 \text{m}$	0.05 pts
	$h_{\text{max}} - h_{\text{min}} \ge 300 \mathrm{m}$	0.05 pts
	7 or more measurements	0.30/0.30
	6 measurements	0.25/0.30
	5 measurements	0.20/0.30
	4 or fewer measurements	0.10/0.30
Plotting	overall plot	0.30 pts
0	points don't cover 60% of the area	-0.10 pts
	missing axis labels	-0.05 pts
	missing axis units	-0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mistakes	-0.10/-0.10
Fit line	drawn on graph	0.10 pts
	slope computed with units	0.10 pts
	uncertainty of slope com-	0.10 pts
	puted	
Values	$1.25 \mathrm{m/s} \le u \le 1.37 \mathrm{m/s}$	0.20/0.20
	$1.19 \mathrm{m/s} = u \le 1.43 \mathrm{m/s}$	0.10/0.20
	units for value	0.05 pts
	$\Delta u \leq 0.06 \mathrm{m/s}$	0.20/0.20
	$\Delta u \leq 0.12 \mathrm{m/s}$	0.10/0.20
	units for error	0.05 pts
	sum	2.0 pts

B.2: By keeping the measurements close to the surface, we can assume to a good approximation uniform air density. Then, using similar reasoning as before, we expect $h = h_0 + v_{t0}t$, where h_0 captures the part of reaching terminal velocity.

At terminal velocity, the drag force balances out gravitational acceleration:

$$mg = 0.24A\rho_a v_t^2.$$

Using $m = 4\pi\rho r^3/3$ and $A = \pi r^2$, we get

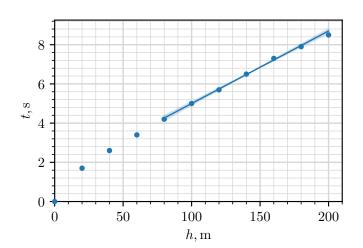
$$v_t(\rho_a) = \sqrt{\frac{4\rho rg}{3 \cdot 0.24\rho_a}}.$$

On the surface, $v_{t0} = v_t(\rho_a = \rho_{a0})$. Using the measurements from the last subtask, we can plot t vs h and measure the slope to be $1/v_{t0} = 0.037$ s/m with an error of $\Delta(1/v_{t0}) = 0.002$ s/m. Hence, $v_{t0} = 27.0$ m/s, $\Delta v_{t0} = \Delta(1/v_{t0})/v_{t0}^2 = 2$ m/s. Now,

$$\rho_{a0} = \frac{4\rho rg}{3 \cdot 0.24 v_{t0}^2} = 0.60 \, \mathrm{kg/m^3}.$$

and the error is

$$\Delta \rho_{a0} = \frac{2\Delta v_{t0}}{v_{t0}} \rho_{a0} = 0.07 \, \text{kg/m}^3.$$



Marking scheme:

Theory	$h = h_0 + v_{t0}t$	0.05 pts
	formula for terminal velocity	0.10 pts
	final expression for ρ_{a0}	0.05 pts
Data	reusing the data from the last	0.05 pts
	subpart	
	$h_{\max} \leq 200 \mathrm{m}$	0.05 pts
	6 or more measurements	0.05 pts
Plotting	overall plot	0.25 pts
	points don't cover 60% of the	-0.05 pts
	area	
	missing axis labels	-0.05 pts
	missing axis units	-0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mistakes	-0.10/-0.10
Fit line	drawn on graph	0.05 pts
	slope computed with units	0.05 pts
	uncertainty of slope com-	0.10 pts
	puted	
Values	$0.52{ m kg/m^3} \le ho_{a0} \le 0.68{ m kg/m^3}$	0.10/0.10
	$0.44 \mathrm{kg}/\mathrm{m}^3 \le ho_{a0} \le 0.76 \mathrm{kg}/\mathrm{m}^3$	0.05/0.10
	$\Delta ho_{a0} \le 0.08 \mathrm{kg}/\mathrm{m}^3$	0.10/0.10
	$\Delta ho_{a0} \le 0.16 \mathrm{kg}/\mathrm{m}^3$	0.05/0.10
	units for both value and error	0.05 pts
	sum	1.0 pts

B.3: Due to the adiabatic profile of the atmosphere, the further up you go, the more the temperature and air density decreases, but the terminal velocity increases. We

can estimate the terminal velocity of the ball at different heights by comparing the dropping time of a ball with the smallest possible terminal velocity (so minimal density and radius). This hence gives a direct probe for the air density and thus the height of the atmosphere.

If the ball reaches terminal velocity instantly, then the difference in falling time between dropping the ball at heights h_1 and $h_2 > h_1$ comes simply from $h_1 < h < h_2$. This is because in both cases the ball falls for the same amount of time at $h < h_1$ (because the terminal velocity only depends on height). Then, if $h_2 - h_1 \ll h_1$, we can estimate

$$v_t\left(\frac{h_1+h_2}{2}\right) \approx \frac{h_2-h_1}{t(h_2)-t(h_1)}.$$
 (1)

In reality, the ball doesn't reach the terminal velocity instantaneously. However, it turns out we can, to a good approximation, neglect this effect. As a rough order of magnitude estimation, on the ground level, the ball experiences a time difference of $v_{t0}/(2g) = 0.8$ s compared to the instantaneous case. This difference will increase as the ball is dropped from further up, but as long as the atmosphere isn't too much sparser in the upper parts of the tower (we can verify this later), the difference will be insignificant compared to the total falling time of the ball. Hence, we approximate the terminal velocity via equation (1).

Because the calculated velocities are very sensitive on the measured quantities, we do repeated measurements throughout the whole height of the tower.

	1	$r = 5 \mathrm{cn}$	n, $\rho = 0.1$	\log/cm^3		
$h(\mathbf{m})$	$s_1(m)$	$t_1(\mathbf{S})$	$s_2(m)$	$t_2(\mathbf{S})$	$s_3(m)$	$t_3(s)$
200	7.6	8.4	7.8	8.6	7.8	8.6
400	17.0	15.7	16.9	15.6	17.3	15.7
600	26.1	22.6	25.4	22.2	26.2	22.7
800	33.6	28.5	34.6	29.2	34.3	29.1
1000	41.1	34.3	43.0	35.7	43.3	35.8
1200	51.1	41.9	50.2	41.2	50.0	41.1
1400	57.9	47.2	58.8	47.8	58.7	47.8
1600	65.5	53.0	65.1	52.8	65.3	52.9
1800	70.9	57.1	72.2	58.2	71.4	57.5
2000	78.5	62.9	79.6	63.8	79.5	63.7

Using equation (1) we make a separate table with velocities, while also adding the ground level velocity found in one of the earlier part (we set it at h = 100 m because that was the centre of the range of measurements). We find air density using

$$\rho_a = \frac{4\rho rg}{3 \cdot 0.24 v_t^2}$$

From the density profile of an adiabatic atmosphere,

$$\rho_a^{\gamma-1} = \rho_a^{0.4} = \rho_{a0}^{0.4} \left(1 - \frac{h}{H_0}\right)$$

Hence, we find H_0 by plotting $\rho_{a0}^{0.4}$ against h and fitting a straight line.

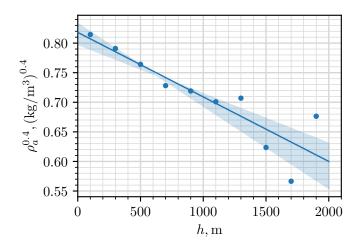
From the plot, we measure the slope $a = -\rho_{a0}^{0.4}/H_0 = -1.1 \times 10^{-4} \, (\text{kg/m}^3)^{0.4}/\text{m}$ and the intercept $b = \rho_{a0}^{2.5} = 0.82 \, (\text{kg/m}^3)^{0.4}$ so $H_0 = -b/a = 7500 \,\text{m}$. We calculate the

	$r=5\mathrm{cm}$, $ ho=0.1\mathrm{g/cm^3}$				
$h(\mathbf{m})$	v(m/s)	$ ho_a(\mathrm{kg}/\mathrm{m}^3)$	$ ho_a^{0.4}((\mathrm{kg}/\mathrm{m}^3)^{0.4})$		
100	27.0	0.599	0.814		
300	28.0	0.556	0.791		
500	29.3	0.510	0.764		
700	31.1	0.452	0.728		
900	31.6	0.438	0.719		
1100	32.6	0.411	0.701		
1300	32.3	0.420	0.707		
1500	37.7	0.307	0.624		
1700	42.6	0.241	0.566		
1900	34.1	0.376	0.676		

error from two reasonably chosen lines that correspond to maximal and minimal estimates for H_0

$$\Delta H_0 \approx \frac{1}{2} \left(-\frac{0.80 \, (\mathrm{kg/m^3})^{0.4}}{-8.4 \times 10^{-5} \, (\mathrm{kg/m^3})^{0.4} / \mathrm{m}} + \frac{0.83 \, (\mathrm{kg/m^3})^{0.4}}{-1.4 \times 10^{-4} \, (\mathrm{kg/m^3})^{0.4} / \mathrm{m}} \right) \approx 2000 \, \mathrm{m}.$$

We can also confirm that our assumption about the **B.4**: From the expression for adiabatic atmosphere we density of the atmosphere not dropping significantly in have the upper parts of the tower holds true.



Marking scheme:

Theory	approximating v_{t0} via finite difference	0.30 pts
	reasoning why the ball reaches terminal velocity	0.15 pts
	effectively instantaneously	
	linearising v_{t0} vs h	0.25 pts
	expressing H_0 in terms of the	0.10 pts
	slope/intercept	
Data	varying only h	0.05 pts
	minimising r	0.05 pts
	minimising ρ	0.05 pts
	table has units	0.05 pts
	h distributed roughly uni-	0.05 pts
	formly	
	$h_{\max} - h_{\min} \ge 1800 \mathrm{m}$	0.10 pts
	calculating derived quantities	0.20 pts

	15 or more measurements (can be repeat)	0.45/0.45
	10 - 14 measurements	0.30/0.45
	1 - 9 measurements	0.15/0.45
Plotting	overall plot	0.30 pts
	points don't cover 60% of the	-0.10 pts
	area	
	missing axis labels	-0.05 pts
	missing axis units	-0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mistakes	-0.10/-0.10
Fit line	drawn on graph	0.10 pts
	slope computed with units	0.15 pts
	uncertainty of slope com-	0.15 pts
	puted	
Values	$5500 { m m} \le H \le 9500 { m m}$	0.20/0.20
	$3500{ m m} \le H \le 11500{ m m}$	0.10/0.20
	units for value	0.05 pts
	$\Delta H \leq 2000 \mathrm{m/s}$	0.20/0.20
	$\Delta H \le 4000 \mathrm{m/s}$	0.10/0.20
	units for error	0.05 pts
	sum	3.0 pts

$$H_0 = \frac{RT_0}{\mu g} \frac{\gamma}{\gamma - 1}$$

SO

$$\mu = \frac{RT_0}{H_0 g} \frac{\gamma}{\gamma - 1} = 72 \,\mathrm{g \, mol}^{-1} \approx 70 \,\mathrm{g \, mol}^{-1}$$

and

$$\Delta \mu = \sqrt{\frac{\Delta H_0^2}{H_0^2} + \frac{\Delta g^2}{g^2}} \mu = 20 \,\mathrm{g \, mol}^{-1}.$$

From ideal gas law,

$$p_0 = \frac{\rho_{a0} R T_0}{\mu} = 20\,000\,\mathrm{Pa}$$

and

$$\Delta p_0 = \sqrt{\frac{\Delta \mu^2}{\mu^2} + \frac{\Delta \rho_{a0}^2}{\rho_{a0}^2}} p_0 = 6000 \,\mathrm{Pa}.$$

Marking scheme:

	sum	0.5 pts
	$\Delta p \leq 8000 \mathrm{Pa}$	0.05 pts
	$12000\mathrm{Pa} \le p_0 \le 28000\mathrm{Pa}$	0.05 pts
	$\Delta \mu \leq 25 \mathrm{g mol}^{-1}$	0.05 pts
Values	$45\mathrm{gmol}^{-1} \le \mu \le 95\mathrm{gmol}^{-1}$	0.05 pts
	correct expression for p_0	0.15 pts
Theory	correct expression for μ	0.15 pts

C.1: Our goal is to find the rotation speed Ω of the planet. The rotation of the planet affects the ball's trajectory via centrifugal and Coriolis force. The centrifugal force, however, due to $H \ll R$ is impossible to disentangle from gravitational acceleration. Coriolis force affects the ball via acceleration $\vec{a}_{cor} = -2\vec{\Omega} \times \vec{v}$. This is perpendicular to both the velocity of the ball and rotation axis of the planet. Hence, it's directed along the equator, and increases linearly with the falling speed. Thus, the horizontal acceleration is given by $a_x = 2\Omega v_y + a_{\text{drag}}$.

The procedure is then to minimize the effect of air drag (maximal radius and density) and hope that the Coriolis effect contributes enough to the horizontal displacement. If we neglect air drag, then $a_x = 2\Omega v_y = 2\Omega gt$ so $v_x = \int a_x dt = \Omega gt^2$ and $x = \int v_x dt \Omega gt^3/3$. The final displacement will then be $s = \Omega t_f^3/3$, where the falling time satisfies $H = gt_f^2/2$. Putting them together, we get

$$s = \frac{2\Omega}{3} \sqrt{\frac{2H^3}{g}}$$

By varying the radius/density, we do indeed confirm that the effect of Coriolis force is significant, on the order of couple of meters. By doing a suitable number of measurements in the range 0 to 2000 m and plotting s vs $h^{1.5}$, we measure the slope

$$a = \frac{2\Omega}{3}\sqrt{\frac{2}{g}} = 5.3 \times 10^{-5} \,\mathrm{m}^{-1/2}$$

and the error

$$\Delta a = 1.1 \times 10^{-6} \,\mathrm{m}^{-1/2}$$

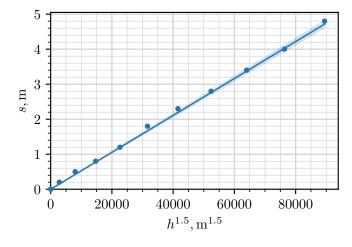
such that

$$T = \frac{2\pi}{\Omega} = \frac{4\pi}{3a} \sqrt{\frac{2}{g}} = 28\,000\,\mathrm{s} \approx 8h$$

and

$$\Delta T = \sqrt{\left(0.5\frac{\Delta g}{g}\right)^2 + \frac{\Delta a^2}{a^2}}T = 0.2\,\mathrm{h}$$

r = 50	$r = 50 \mathrm{cm}, \rho = 10 \mathrm{g/cm^3}$					
$h(\mathbf{m})$	$s(\mathbf{m})$	$h^{1.5}(\mathbf{m}^{1.5})$				
0	0.0	0				
200	0.2	2800				
400	0.5	8000				
600	0.8	14700				
800	1.2	22600				
1000	1.8	31600				
1200	2.3	41600				
1400	2.8	52400				
1600	3.4	64000				
1800	4.0	76400				
2000	4.8	89400				



Alternative solution.

An alternative approach is to consider the system in the non-rotating frame (where we don't have to deal with fictitious forces). In there, the ball starts off with speed $v_0 = \Omega(R + H)$. Due to the conservation of angular momentum, as the ball drops towards the ground, the ball's angular speed will start increasing and the ground will start lagging behind (the ground rotates with Ω). At height h, when the ball moves with angular speed ω , the conservation of angular momentum reads $\omega(R + h)^2 = \Omega(R + H)^2$ and so the angular lag between the ball and the ground is

$$\Delta \omega = \omega - \Omega = \Omega \left(\left(\frac{R+H}{R+h} \right)^2 - 1 \right) \approx 2\Omega \frac{H-h}{R}$$

The positional velocity shift along the ground is then $v_x = \Delta \omega R = 2\Omega(H - h) = \Omega g t^2$. We recover the same expression as for Coriolis force, and from there we proceed the same way as before.

Marking scheme:

Theory	Deriving $s(h)$	0.80 pts
-	linearising s vs h	0.10 pts
Data	varying only h	0.05 pts
	minimising r and $ ho$	0.05 pts
	table has units	0.05 pts
	h distributed roughly uni-	0.05 pts
	formly	
	$h_{\max} - h_{\min} \ge 1800 \mathrm{m}$	0.05 pts
	calculating derived quantities	0.05 pts
	7 or more measurements	0.30/0.30
	6 measurements	0.25/0.30
	5 measurements	0.20/0.30
	4 or fewer measurements	0.10/0.30
Plotting	overall plot	0.30 pts
	points don't cover 60% of the	-0.10 pts
	area	
	missing axis labels	-0.05 pts
	missing axis units	-0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mistakes	-0.10/-0.10
Fit line	drawn on graph	0.10 pts
	slope computed with units	0.10 pts
	uncertainty of slope com-	0.10 pts
	puted	
Values	$27000{ m s} \le T \le 29000{ m s}$	0.20/0.20
	$26000{ m s} \le T \le 30000{ m s}$	0.10/0.20
	missing units for value	-0.05 pts
	$\Delta T \leq 1000 \mathrm{s}$	0.20/0.20
	$\Delta T \leq 2000 \mathrm{s}$	0.10/0.20
	missing units for error	-0.05 pts
	sum	2.5 pts

E2: Cylindrical Diode - SOLUTION

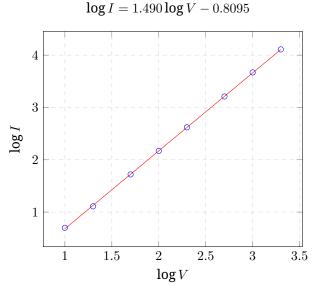
Take the logarithm of Equation 1,

$$\log I_{\infty} = \log C + \alpha \log R_c + \beta \log L_e + \gamma \log V$$

A.1: Collect data by varying *V*. To minimize error, select maximum values for all fixed variables, this means $L_e = 99$ cm, $R_c = 10$ cm, and $R_e = 1.0$ cm. Distribute the voltages logarithmically between 10 and 2000

V (V)	<i>I</i> (mA)	$\log V$	log I
10	5	1.0	0.70
20	13	1.3	1.11
50	52	1.7	1.72
100	147	2.0	2.17
200	415	2.3	2.62
500	1620	2.7	3.21
1000	4630	3.0	3.67
2000	12900	3.3	4.11

Plot this on a graph; the best fit line is



so $\gamma = 1.49$.

A statistical analysis of the uncertainty in the slope yields $\gamma = 1.490 \pm 0.005.$

Assessing the slope by visually fitting lines through the error bars on the points requires considering that error bars on a log axis are given by

$$\delta(\log y) = \delta\left(\frac{\ln y}{\ln 10}\right) = \frac{1}{\ln 10}\frac{\delta y}{y}$$

Since the largest relative error is in the smallest valued quantity, the focus is on $\delta V/V$ for V = 10V and $\delta I/I$ for I = 5mA. The error bars associated with the log-log plot at that point are then

$$(1 \pm 0.02, 0.70 \pm 0.04)$$

The other error bars are smaller; focusing on that point alone we can fit two extreme lines and get

$$\gamma = 1.485 \pm 0.025$$

Either approach is acceptable. Marking scheme:

Data		0 0E nto
Data	vary only V	0.05 pts
	$R_e \ge 1$ cm	0.05 pts
	$R_c \ge 10 R_e \mathrm{cm}$	0.05 pts
	$L_e \ge 90$ cm	0.05 pts
	table has units	0.05 pts
	V distributed as log	0.05 pts
	$V_{\max} \ge 1000 \mathrm{V}$	0.05 pts
	$V_{\min} \ge 10 \mathbf{V}$	0.05 pts
	$V_{\min} \le 50 \mathrm{V}$	0.05 pts
	Correct calculations	0.05 pts
	7 or more points	0.30/0.30
	6 points	0.25/0.30
	5 points	0.20/0.30
	4 or fewer points	0.10/0.30
Plotting	covers > 50% of area	0.10 pts
	Axis labels	0.05 pts
	Axis units correct	0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mis-	-0.10/-0.10
	takes	
Fit	line drawn on graph	0.10 pts
	slope correctly computed	0.10 pts
	with units	
	$1.45 < \gamma < 1.55$	0.10 pts
	uncertainty of slope com-	0.10 pts
	puted	
	$\delta\gamma \le 0.03$	0.10 pts
	sum	1.5 pts

Measured data should be entered into spreadsheet that will calculate results; if deviation is too large, data point should not count.

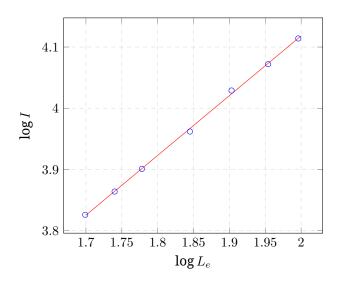
Evidence of reverse engineering should result in zero points for the entire section

A.2: Collect data by varying L_e . To minimize error, select maximum values for all fixed variables, this means V = 2000 V, $R_c = 10$ cm, and $R_e = 1$ cm.

L_e (cm)	<i>I</i> (mA)	$\log L_e$	log I
	. ,		
99	13000	1.996	4.144
90	11800	1.954	4.072
80	10700	1.903	4.029
70	9170	1.845	3.962
60	7960	1.778	3.901
55	7310	1.740	3.864
50	6700	1.699	3.826

Plot this on a graph; the best fit line is

$$\log I = 0.9767 \log L_e + 2.1649$$



so $\beta = 0.9767$.

A statistical analysis of the uncertainty in the slope yields $\beta = 0.98 \pm 0.02.$

Graphical fitting of the steepest and shallowest lines yields $\beta = 0.97 \pm 0.02.$

Marking scheme:

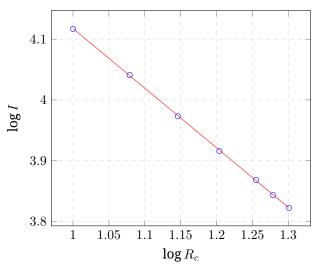
	sum	1.5 pts
	$\delta \beta \le 0.03$	0.10 pts
	puted	
	uncertainty of slope com-	0.10 pts
	$0.97 < \beta < 1.03$	0.10 pts
	with units	
	slope correctly computed	0.10 pts
Fit	line drawn on graph	0.10 pts
	takes	0.10, 0.10
	two or more plotting mis-	-0.10/-0.10
	one plotting mistake	-0.05/-0.10
	Axis units correct	0.05 pts
Toung	Axis labels	0.10 pts
Plotting	4 of rewer points covers > 50% of area	0.10/0.30 0.10 pts
	5 points 4 or fewer points	0.20/0.30
	6 points 5 points	0.25/0.30 0.20/0.30
	7 or more points	0.30/0.30
	rived quantities	0.20/0.20
	Correct calculations of de-	0.05 pts
	$L_{e,\min} \leq 50$ cm	0.05 pts
	$L_{e,\min} \ge 3R_c$	0.05 pts
	$L_{e,\max} \ge 90$ cm	0.05 pts
	L_e distributed evenly	0.05 pts
	table has units	0.05 pts
	$V \ge 100 \mathrm{V}$	0.05 pts
	$R_c \ge 10 R_e \mathrm{cm}$	0.05 pts
	$R_e \ge 1$ cm	0.05 pts
Data	vary only L_e	0.05 pts

A.3: Collect data by varying R_c . To minimize error, select maximum values for all fixed variables, this means V = 2000 V, $L_e = 99$ cm, and $R_e = R_c/10$ cm.

R_c (cm)	<i>I</i> (mA)	$\log R_c$	log I
20	6640	1.301	3.822
19	6970	1.279	3.843
18	7380	1.255	3.868
16	8240	1.204	3.916
14	9390	1.146	3.973
12	11000	1.079	4.041
10	13100	1.000	4.117

Plot this on a graph; the best fit line is

 $\log I = -0.9816 \log R_c + 5.1000$



so $\alpha=-0.9824.$

A statistical analysis of the uncertainty in the slope yields $\beta = -0.98 \pm 0.01.$

Graphical fitting of the steepest and shallowest lines yields $\beta=0.97\pm0.02$.

Marking scheme:

	sum	1.5 pts
	$\delta \alpha \le 0.03$	0.10 pts
	puted	_
	uncertainty of slope com-	0.10 pts
	$-1.03 < \alpha < -0.97$	0.10 pts
	with units	÷
	slope correctly computed	0.10 pts
Fit	line drawn on graph	0.10 pts
	takes	0.10/ 0.10
	two or more plotting mis-	-0.10/-0.10
	one plotting mistake	-0.05/-0.10
	Axis units correct	0.05 pts 0.05 pts
Plotting	covers > 50% of area Axis labels	0.10 pts
Dlatting	4 or fewer points	0.10/0.30
	5 points	0.20/0.30
	6 points	0.25/0.30
	7 or more points	0.30/0.30
	rived quantities	
	Correct calculations of de-	0.05 pts
	$R_{c,\min} \le 10$ cm	0.05 pts
	$R_{c,\min} \ge 10R_e$	0.05 pts
	$R_{c,\max} \ge 15$ cm	0.05 pts
	R_c distributed evenly	0.05 pts
	table has units	0.05 pts
	$V \ge 100 \mathrm{V}$	0.05 pts
	$R_c \ge 10 R_e \mathrm{cm}$	0.05 pts
	$R_e \ge 1$ cm	0.05 pts
Data	vary only R_c	0.05 pts

B.1: Use all three sets of data, and the exponents from all three, and then average the results

 $\log C = \log I - 1.495 \log V - 0.9854 \log L_e + 0.9781 \log R_c$

which gives

 $C = (0.0165 \pm 0.0003) \mathrm{mA/V^{3/2}}$

The theoretical value is approximately:

$$\frac{8\pi\epsilon_0}{9}\sqrt{\frac{2e}{m}}\approx 1.47\times 10^{-5}\mathrm{A/V^{3/2}}$$

Note that there is a nasty correction (the texts usually call it β , which is not the same as our exponent), that we use in the code, but aren't expecting students to find, because of this correction, we don't expect the theoretical value to hold. Students who try to solve the theoretical problem will be vexed by this.

For space reasons, we write numerical C below without explicit units, but using the units of $\mu A/V^{3/2}$, that is

$$C = 16.5 \mu \text{A}/\text{V}^{3/2}$$

Students *must* have clear units! Marking scheme:

Theory	clear statement	0.20 pts
Fit	Used $R_c = 10R_e$	0.10 pts
	C computed	0.10 pts
	More than 9 data points	0.20/0.20 pts
	8 or 9 data points	0.15/0.20 pts
	7 or 8 data points	0.10/0.20 pts
	5 or 6 data points	0.05/0.20 pts
	C has correct units	0.10 pts
	$16.2 \le C \le 16.8$	0.10/0.10 pts
	$15.9 \le C \le 17.1$	0.05/0.10 pts
	uncertainty computed	0.10 pts
	$0.1 < \delta C \le 0.03$	0.10 pts
	$0 < \delta C \le 0.05$	0.05/0.10 pts
	sum	1.0 pts

Clear statement of theory means that somewhere there is a justification for the data they are collecting and using. This can be in the form of the log formula; words are not necessary. Reusing data is okay. **C.1:** Start by assuming that L_e matters, and look at values near R_c . Repeat for other variables. Remember that C depends on the ratio between R_c/R_e , so change these together!

Using nearest half integers, we have for the first equation

$$I_{\infty} = C \frac{L_e}{R_c} V^{3/2}$$

so that

$$F = \frac{I_{measured}}{C\frac{L_e}{R_c}V^{3/2}}$$

				- •C		
R_c	R_e	L_e	V	Ι	I_{∞}	F
cm	cm	cm	V	mA	mA	
10	1	10	1000	535	500	1.071
12	1.2	10	1000	470	416	1.129
8	0.8	10	1000	647	624	1.036
10	1	12	1000	630	599	1.051
10	1	8	1000	451	400	1.129
12	1.2	12	1000	537	500	1.075
8	0.8	8	1000	537	500	1.075
10	1	10	1100	617	576	1.071
10	1	10	900	457	426	1.072

From this we conclude that if $R_c \uparrow$, $F \uparrow$; if $L_e \uparrow$, $F \downarrow$; if $V \uparrow$, F doesn't change.

Also, we notice that the ratio R_c/L_e seems to be the important quantity.

Marking scheme:

Data	clearly collected	0.10 pts
Data	$R_c \uparrow \Longrightarrow F \uparrow$	0.10 pts
	$L_e \uparrow \Longrightarrow F \downarrow$	0.10 pts
	$V_c \uparrow$: F no significant change	0.10 pts
	$R_e \uparrow: F$ no significant change	0.10 pts
	sum	0.5 pts

C.2: We propose

$$F = A + B \frac{R_c}{L_e}$$

with $x = R_c/L_e$.

Marking scheme:

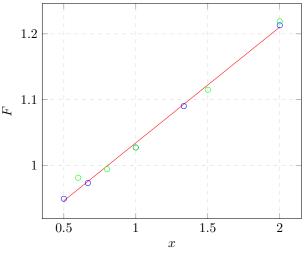
Theory	clear statement	0.20 pts
Def	$x = R_c/L_e$	0.30/0.30 pts
	$x = L_e/R_c$	0.15/0.30 pts
	sum	0.5 pts

Any multiple of R_c/L_e is also acceptable.

C.3: It is important to collect data that varies R_c and L_e independently, so as to not bias our hypothesis. We will also keep the ratio with $R_c/R_e = 10$, in order to avoid other effects with the constant in part B.

R_c (cm)	L_e (cm)	I (mA)	I_{∞}	x	F
20	10	898	740	2.000	1.213
20	15	1210	1110	1.333	1.090
20	20	1520	1480	1.000	1.027
20	30	2160	2221	0.667	0.973
20	40	2810	2961	0.500	0.949
6	10	2420	2467	0.600	0.981
8	10	1840	1850	0.800	0.994
10	10	1520	1480	1.000	1.027
15	10	1100	987	1.500	1.115
20	10	902	740	2.000	1.219

We plot the results below; blue are the values of fixed R_e while green are the values of fixed L_e .



The result is

$$F(x) = 0.8579 + 0.1762x$$

Which is in error at x = 1 by about 3%.

If you are thinking that this looks like a quadratic fit might be better, you are correct, but there really isn't time to do that for this experiment.

Marking scheme:

Data	vary L_e	0.10 pts
	vary R_c	0.10 pts
	$R_e \ge 0.5$ cm	0.05 pts
	$R_c = 10 R_e \mathrm{cm}$	0.05 pts
	$V \ge 500 \mathrm{V}$	0.05 pts
	table has units	0.05 pts
	$L_e \ge 10$ cm	0.05 pts
	$L_{e,\max} \le 40$ cm	0.05 pts
	L_e well distributed	0.05 pts
	R_c	0.05 pts
	Correct calculations of de-	0.10 pts
	rived quantities	
	10 or more points	0.30/0.30
	9 points	0.25/0.30
	8 points	0.20/0.30
	6 or 7 points	0.10/0.30
	5 or fewer points	0.05/0.30
Plotting	covers > 50% of area	0.10 pts
_	Axis labels	0.05 pts
	Axis units correct	0.05 pts
	one plotting mistake	-0.05/-0.10
	two or more plotting mis-	-0.10/-0.10
	takes	
Fit	line drawn on graph	0.10 pts
	slope correctly computed	0.10 pts
	with units	_
	0.17 < B < 0.18	0.10 pts
	sum	1.5 pts
		_